|
Researchers Created ‘Quantum Artificial Life’ For the First Time
“Our research brought these amazingly sophisticated events called life to the realm of the atomic and microscopic world …and it worked.”
For the first time, an international team of researchers has used a quantum computer to create artificial life—a simulation of living organisms that scientists can use to understand life at the level of whole populations all the way down to cellular interactions.
With the quantum computer, individual living organisms represented at a microscopic level with superconducting qubits were made to “mate,” interact with their environment, and “die” to model some of the major factors that influence evolution.
The new research, published in Scientific Reports on Thursday, is a breakthrough that may eventually help answer the question of whether the origin of life can be explained by quantum mechanics, a theory of physics that describes the universe in terms of the interactions between subatomic particles.
Modeling quantum artificial life is a new approach to one of the most vexing questions in science: How does life emerge from inert matter, such as the “primordial soup” of organic molecules that once existed on Earth?
Erwin Schrödinger first proposed that the answer might lie in the quantum realm in 1944 in his seminal book on the topic, What is Life?. But progress has been delayed by difficulties in creating the powerful quantum computers needed to power the simulations that can answer this question.
Unlike the normal, “classical” computers you’re using to read this article, which only process information in binary bits—units of information whose value can either be a one or a zero—quantum computers make use of qubits, whose information value can be a combination of both one and zero. This property, known as superposition, means that large-scale quantum computers will have vastly more information-processing power than classical computers.
The aim of the research team, led by physicists Enrique Solano and from Basque Foundation for Science, was to create a computer model that replicates the processes of Darwinian evolution on a quantum computer. To do this the researchers used a five qubit quantum processor developed by IBM that is accessible through the cloud. |
|
Chris Hadfield |
The best simulator for spacewalking is underwater - it allows full visuals and body movement in 3D. Virtual reality is good, too, and has some advantages, like full Station simulation, not just part. Like all simulators, they have parts that are wrong and misleading: an important thing to remember when preparing for reality. |