|
We used to think that a new embryo's epigenome was completely erased and rebuilt from scratch. But this isn't completely true. Some epigenetic tags remain in place as genetic information passes from generation to generation, a process called epigenetic inheritance.
Epigenetic inheritance is an unconventional finding. It goes against the idea that inheritance happens only through the DNA code that passes from parent to offspring. It means that a parent's experiences, in the form of epigenetic tags, can be passed down to future generations.
As unconventional as it may be, there is little doubt that epigenetic inheritance is real. In fact, it explains some strange patterns of inheritance geneticists have been puzzling over for decades.
Most complex organisms develop from specialized reproductive cells (eggs and sperm in animals). Two reproductive cells meet, then they grow and divide to form every type of cell in the adult organism. In order for this process to occur, the epigenome must be erased through a process called "reprogramming."
Reprogramming is important because eggs and sperm develop from specialized cells with stable gene expression profiles. In other words, their genetic information is marked with epigenetic tags. Before the new organism can grow into a healthy embryo, the epigenetic tags must be erased.
At certain times during development (the timing varies among species), specialized cellular machinery scours the genome and erases its epigenetic tags in order to return the cells to a genetic "blank slate." Yet, for a small minority of genes, epigenetic tags make it through this process and pass unchanged from parent to offspring.
Proving epigenetic inheritance is not always straightforward. To provide a watertight case for epigenetic inheritance, researchers must:
Rule out the possibility of genetic changes In organisms with larger genomes, a single mutation can hide like a needle in a haystack.
Show that the epigenetic effect can pass through enough generations to rule out the possibility of direct exposure In a pregnant mother, three generations are directly exposed to the same environmental conditions at the same time. An epigenetic effect that continues into the 4th generation could be inherited and not due to direct exposure. Researchers face the added challenge that epigenetic changes are transient by nature. That is, the epigenome changes more rapidly than the relatively fixed DNA code. An epigenetic change that was triggered by environmental conditions may be reversed when environmental conditions change again.
Epigenetic inheritance adds another dimension to the modern picture of evolution. The genome changes slowly, through the processes of random mutation and natural selection. It takes many generations for a genetic trait to become common in a population. The epigenome, on the other hand, can change rapidly in response to signals from the environment. And epigenetic changes can happen in many individuals at once. Through epigenetic inheritance, some of the experiences of the parents may pass to future generations. At the same time, the epigenome remains flexible as environmental conditions continue to change. Epigenetic inheritance may allow an organism to continually adjust its gene expression to fit its environment - without changing its DNA code. |
|
Gilbert K. Chesterton |
The object of a New Year is not that we should have a new year. It is that we should have a new soul and a new nose; new feet, a new backbone, new ears, and new eyes. Unless a particular man made New Year resolutions, he would make no resolutions. Unless a man starts afresh about things, he will certainly do nothing effective. |